

Index

Please follow carefully the instructions included in this manual for a correct installation and operation. If you need further information, please contact our Technical Dept.

Verification of the parts contained in this unit 1

Standards 1
Installation/Mounting 2
Product guide ..

- Voltage supply
- Input signals \& RS485/MODBUS Communication
- Output signals
- Operation selector
- Display

- Manual operation
- Motorised operation
- Lock mode

Annexes 12

- Annexe 1:Table of references
- Annexe 2: Dimensions
- Annexe 3: Wiring diagram
- Annexe 4:Wiring voltaje drop
- Annexe 5: Table of electrical features
- Annexe 6: EMC Table

Verification of the parts contained in this unit

Before the installation ensure that the following parts are included in the carton box:

- Motorised unit MU.
- Plastic bag containing screws for fixing the MU to the switch, and electrical connectors.
- Switch - MU coupling shaft.
- Manual handle for direct operation.

In the installation and during the operation of the (UIU it is necessary to observe the following recomendations:

- Make sure that the voltage of the MU is the same than the voltage we are going to work with, and the (MU) is suitable for the switch that is going to drive (see Annexe 1, page 12).
- Before intallation ensure that both, switch and M are in 0 (OFF) position.
- Qualified personnel has to install the
- Follow carefully the installation instructions and the wiring diagrams.
- The (MU) must be installed on the switch before being operated. Do not switch the voltage supply until the whole wiring operation has been made.
- Do not dismantle, repair or modify this unit, as it may cause malfunctioning or electrical discharges.
- Do not voltage supply or connect the (UII if any of the parts are damaged.
- Take into account possible voltage drops in the wiring. (see Annexe 4, page 17).
- Telergon is not responsible for inappropriate use of the MU or the misinterpretation of the information contained in this document.
- The installation of this device in a domestic environment can cause radiofrequency interference.

Standards

[^0]- IEC/EN 60947-1 and 3. Low voltaje devices. General part and Switch - Disconnectors.
-IEC/EN/UNE 61000-6, Parts 2 and 4. Electromagnetic compatibility in industrial environments, immunity and emission.

This product in under $\boldsymbol{E}_{\text {marking }}$
NOTE: The content of this document can be modified without precious warning.

Installation / Mounting

Ensure that the voltage of the coincides with the voltage we are going to work with, and the is suitable for the switch that is going to drive. (see Annexe 1, page 12).

Before installation make sure that both the switch and the (UU) are in position 0 (OFF).

The $@$ must be installed on the switch before being operated following next steps.

FOR SWITCH SERIES S5000 200... 630 A

(2) Fix connectors (CN1, CN2, CN3) and connect according to the wiring diagram (see Annexe 3, page 15-16)

FOR SWITCH SERIES S5000 800... 1800 A

(1)

Set the switch in its place and fix the bars. Then screw $x 20$ DIN 7985 screws (x 6) and A.E.T. 5,3 washers ($x 6$) included

MOUNTING POSITIONS

The positions of the dud depend the switch mounting position.
S5000
200... 630 A

(1*) For inverted mounting there are references for
(10) with inverted frontal plates. Supply under request.

Installation / Mounting

MOUNTING POSITIONS

The positions of the depend the switch mounting position.

S5000
800... 1800 A

S5000
2000... 3150 A

(1*) For inverted mounting there are references for
(1I) with inverted frontal plates. Supply under request.

Product guide

A - VOLTAGE SUPPLY

The (MU) requires a voltage supply for its operation (terminals 1-2).
For the to have an uninterrupted supply system (mains - secondary sources), the customer shall prepare a circuit similar to the example (*) at page 16.
Supply voltage available (see Annexe 1, page 12).

	Terminals
Voltage supply	1-2
Terminal max. capacity: $4 \mathrm{~mm}^{2}$ (without clamps) /	
Terminal min. capacity: $1,5 \mathrm{~mm}^{2}$ (see Annexe 4, page 17).	

B-INPUT SIGNALS

The electrical inputs indicate to the (MIU) the position to move.
The digital inputs configuration allow that they can be operated through a non voltage contact (relay, switch) or directly applying a voltage.
Using an isolated contact, the activation of it, must close the circuit between the correspondent input terminal and the +5 Vdc (terminal 4) or +24 Vdc (terminal 3) signal.
Using the direct application of the voltage, the voltage source must be in the same potential of the inputs. Therefore it is necessary to join the Ground of the source to the (MU) GND1 signal (terminal 10).

The maximum voltage that the input terminals can support is $\mathrm{Vmax}=40 \mathrm{Vdc}$, $\mathrm{Imax}=500 \mathrm{~mA}$.

Switching order	Terminal	5 Vdc	24 Vdc	GND
Go to 0	7	4	3	10
Gotol	6	4	3	10

Imax $=500 \mathrm{~mA} x$ Terminal. External Connection + GND
Terminal max. capacity: $1,5 \mathrm{~mm}^{2}$ (without clamps) /
$1 \mathrm{~mm}^{2}$ (with clamps).
Terminal min. capacity: $0,5 \mathrm{~mm}^{2}$.
(see Annexe 4, page 17).

RS485 / MODBUS COMMUNICATION

Let the total digital control of the (10) with the input/output management.
(see page 10 for table with addresses and operation).
Note: It is necessary to advise that the communications and the inputs are in the same potential.

	Terminal
-	A
+	B

Terminal max. capacity: 1,5 mm² (without clamps) / $1 \mathrm{~mm}^{2}$ (with clamps).
Terminal min. capacity: $0,5 \mathrm{~mm}^{2}$ solid or stranded cable.

C-INPUT SIGNALS

Indicate the current position of the switch.
Performed through a contact based on a solid state relay.
The outputs can be supply through the (MU) internal auxiliary voltage +5 Vdc (connector 4) or +24 Vdc (connector 3) as outputs common and the corresponding terminal.
The outputs can also be controlled through a external voltage source located between the position outputs and the GND2 terminal (15) (Vmax $=315 \mathrm{Vac} / \mathrm{dc}$, Imax $=120 \mathrm{~mA})$
These outputs can be used to operate an actuator (lamp, relay, led, etc).
An Error output signal is added. (see part E, Display, page 7).

| Switching order | Terminal | $\mathbf{5}$ Vdc | $\mathbf{2 4}$ Vdc | GND |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Position 0 | 12 | 4 | 3 | 15 |
| Position I | 13 | 4 | 3 | 15 |
| Signal error | 11 | 4 | 3 | 15 |

Imax $=100 \mathrm{~mA} x$ Terminal. Internal Connection 5 Vdc
Imax $=50 \mathrm{~mA} \times$ Terminal. Internal Connection 24 Vdc
Imax $=120 \mathrm{~mA} x$ Terminal. External Connection + GND
Terminal max. capacity: $1,5 \mathrm{~mm}^{2}$ (without clamps) /
$1 \mathrm{~mm}^{2}$ (with clamps).
Terminal min. capacity: $0,5 \mathrm{~mm}^{2}$
(see Annexe 4, page 17).

Take into account terminals polarity (see Annexe 3, page 15-16).

D - OPERATION SELECTOR

Selector	Position	Description
	MAN	Operation only with the manual handle, electric operation not possible.
	AUT	Motorised operation with inputs/outputs or RS485 MODBUS.
	BLC	Lock position, manual and motorised operation not possible.

Note: For changing the selector from AUT to MAN press the lever behind the yellow selector.

E-DISPLAY

4 digits red display is added.
The display shows every moment the operation mode and the changeover position with the following messages:

Manual mode	Lock mode	Auto mode	Error messages	Test mode
Ma 0	Bl 0	Au 0	Err 0	8888
Ma 1	-	Au 1	Err 1	-
Ma 2	-	Au 2	Err 2	-

THE (II) HAS 3 KIND OF ERRORS:

Error 1

Moving in lock mode failure.
The Shaft has been operated during lock mode.

Error 2

Non finished operation failure.
The operation in progress has not finished.

Error 3

Broken piston error.
A manual movement of the Shaft has been made during auto mode.

Besides, it is possible to configure the way the messages appear in the display, to adapt it to a MU with the motor up or down:
a) MU in manual mode.
b) Switch on "go to 1 " and "go to 2".
c) Connect voltage supply and the message "Conf" will appear in the display.
d) Switch off "go to 1 " and "go to 2 ".
e) ON / OFF "go to 2 " to navigate through the menu.
f) ON / OFF "go to 1 " to modify the options.
g) ON "go to 0" appears the option "Save". OFF "go to 0 " and the current parameters will be saved. The message "OK" appears in the display.
h) Selecting auto mode and then manual mode, exits the menu without saving

Operating modes

There are 3 operating modes selectable with the frontal yellow selector (D):

- Manual operation
- Motorised operation
- Lock mode

Manual operation

To operate in this kind of mode the yellow frontal selector has to be in the manual position. To pass from AUT position to MAN position the lever behind the yellow selector has to be pressed.
The switch can be operated only with the direct handle.

Inputs

Automatic operation is not possible in this mode. The (MU) does not respond to the commands entered by the communication bus neither the electric signals.
Information about the switch position is sent via MOBUS.

Outputs

Outputs can be supply through the internal auxiliary voltage of the MOU +5 Vdc (Terminal 4, Imax $=100 \mathrm{~mA}$) or +24 Vdc (Terminal 3, Imax $=50 \mathrm{~mA}$), working as the outputs common and the correspondent terminal.
A external voltage supply can be used (Vmax $=315 \mathrm{Vac} / \mathrm{dc}$, Imax $=120 \mathrm{~mA}$) located between the outputs and the GND terminal.

These outputs can be used to operate an actuator (lamp, relay, led, etc.).

Manual operating example:

Manual operating mode

Take into account terminals polarity (see Annexe 3, page 15-16).

Automatic operation

The switch can be remote-controlled in two ways:

- Control through electric inputs/outputs
- MODBUS control

In this operation mode the system can be driven in any of these control modes.
The MU executes the first input signal.
In order to avoid duplicate signals, when we give an order via MODBUS, the signal inputs will be blocked automatica$\| y$, and then unblocked when the (MU) reaches the required position.
Between two signals, the (MU) disables the signal inputs during two seconds.

Automátic operation

OPERATION MODE AUTO (inputs/outputs)

Inputs

The switching is made by pulse or maintains contact.

CONTROL BY PULSE

The switching order is made by pulse between the common terminal and the terminals 7 (position 0) and 6 (position I)..
Minimum duration of pulse 100 ms .

CONTROL BY PULSE

Example of control by pulse:

$\operatorname{Tmin}=100 \mathrm{~ms}$.

CONTROL BY MANTAINED CONTACT

The switching order is made by maintained pulse between the common terminal and the terminals 7 (position 0) and 6 (position I).

CONTROL BY MAINTAINED CONTACT

Outputs

Outputs can be supply by the internal auxiliary voltage of $\mathbf{M U}+5 \mathrm{Vdc}($ terminal $4, I \mathrm{max}=100 \mathrm{~mA}$) or $+24 \mathrm{Vdc}($ terminal $3, I \mathrm{max}=50 \mathrm{~mA}$) that acts as the output common, and the correspondent terminal.
Outputs can also be controlled by a external auxiliary supply ($\mathrm{Vmax}=315 \mathrm{Vac} / \mathrm{dc}, \operatorname{lmax}=120 \mathrm{~mA}$) located between the position outputs and the terminal GND.
These outputs can be used to operate an actuator (lamp, relay, led, etc.).

Take into account terminals polarity (see Annexe 3, page 15-16).

Operating modes

OPERATING MODE AUTO (MODBUS Protocol)

The devices communicate themselves through the MODBUS protocol, using a technique master-slave where only one device (the master) can start transactions (requests). Other devices (slaves) respond providing to the master the requested data, or realizing the requested action.

During the transmission, the uses a speed of 9600 baud, the address of the device is 04 h and it uses 8 bits without parity and with 1 stop bit in RTU format.

The MODBUS protocol indicates the format for the master's request, and it includes the address of the slave device, a code of function that defines the requested action any
data to be sent and a field for error checking. (When there is more than one, it will be necessary to put different addresses for each unit. This function shall be done in the factory under customer's request).
Slave answer message is also defined by the MODBUS protocol. It contains fields that confirm the action, any data to be returned and a field for error checking. If the message received by the slave is defective, or the slave is unable to make the requested action, it will generate an error message and send it as an answer.

ACTUATION ORDERS

To drive the switch, function 05 h (Force single coil) is used as follows.

Slave address	Function	High address	Low address coil	Force data high	Force data low	CRC high	CRC low	Meaning
-	05h	00h	00h	FFh	00h	-	-	Go to 0
-	05h	00h	01h	FFh	00h	-	-	Go to 1

(04h default)

The answer for a correct order is an echo to the received one.
The answer for a error order has the following form:

Slave address	Function	Error code	CRC high	CRC low	Meaning
-	85 h	XXh		-	-
$(04 \mathrm{~h}$			Function error		

(04h default)

Where the value of the exception code XXh is among the following ones:

Code	Name
01 h	Illegal function
02 h	Illegal data address
03 h	Illegal data value
Slave device failure	Function not recognised
(04h default $)$	Data address not valid. If not is 0000h or 0001h

DATA REQUEST

The function used is 02 h "Read Input Status" and is used in the next general form:

| Slave
 address | Function | Starting address
 high | Starting address
 low | Number of
 points high | Number of
 points low | CRC high | CRC low |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Meaning

Operating modes

The answer for this request is:

Slave address	Function	Bytes number	Second byte $8-F$	First byte $0-7$	CRC high	CRC low	Meaning
-	02 h	02 h	XXh	XXh	-	-	Answer
(04h default)							

THE MEANING OF THE BITS OF THE RETURNED WORD

In order to code the different answers returned, every bit of the two bytes returned is used with the following meanings:

	Bit address	State	Meaning	State	Meaning
First byte	0	0	The switch is NOT in 0	1	The switch is in 0
	1	0		1	
	2	0		1	
	3	0	The switch is NOT in I	1	The switch is in I
	4	0	Automatic detector NOT activated	1	Automatic detector activated
	5	0	Lock detector NOT activated	1	Lock detector activated
	6	0		1	
	7	0		1	
Second byte	8	0	NO manipulation error	1	Manipulation error, it has been moved
	9	0	NO operation error	1	Operation error, does not reach the objective
	A	0	NO error of relay	1	Error of relay
	B	0	NO Blown fuse	1	Blown Fuse
	C	0	Configured in switch mode	1	Configured in changeover mode
	D	0	Pushbutton "go to 0" NOT actuated	1	Pushbutton "go to 0" actuated
	E	0		1	
	F	0	Pushbutton "go to l" NOT actuated	1	Pushbutton "go to l" actuated

Note: Bits 0 and 3 are activated separately; if one of them is activated, the other two must be deactivated.
Note: If both the bits 4 and 5 are in 0 , the (MU) is in MAN. They can't be both activated at the same time.

The answer for an error has the following form:

Slave address	Function	Error code	CRC high	CRC low	Meaning	
-	82 h	XXh		-		
(04h default)						Answer error

Where the value of the code XXh is among the following ones:

Code	Name	Meaning
01 h	Illegal function	Function not recognised
02 h	Illegal data address	Invalid data address, if is different to 0000h
03 h	Invalid data value, if is different to 0010	

Lock mode

In this mode of work is impossible the manual and electrical operation. This working mode is chosen locating the yellow selector in the lock position.

Consists of an unstable position where 3 padlocks can be located (Max ø6) to maintain it.

Annexe 1

REFERENCES

The range of is available from 200 to 3150 Amp , and voltage supplys are 120, 230 and $277 \mathrm{Vac} / \mathrm{dc}$.

For inverted mountings there are references for $\mathbf{(1)}$ with inverted frontal plates. Supply under request.

(10)	A	B	C	D	E	F	G	H	I	J	K	L	M	N	M Max. Nxm
UM-S11120Z	52,5	133	117	150	150	237	380	245	276	217	380	220	100	117	18
UM-S11230Z															
UM-S11277Z															
UM-S12120Z										275	380	242	130	148	25
UM-S12230Z									298						
UM-S12277Z															
UM-S21120Z	88,5	167	153	184	172	312	455	361							
UM-S21230Z									311	487	290	255	312	175	78
UM-S21277Z															
UM-S31120Z									342	544	$\begin{gathered} 381 \\ (1000 \mathrm{~A}- \\ 1250 \mathrm{~A}) \end{gathered}$	286	312	232	150
UM-S31230Z															
UM-S31277Z											$\begin{gathered} 441 \\ (1600 \mathrm{~A}- \\ 1800 \mathrm{~A}) \end{gathered}$				
UM-S32120Z											$\begin{gathered} 543 \\ (2000 \mathrm{~A} \\ 2500 \mathrm{~A}) \end{gathered}$				150
UM-S32230Z											$\begin{gathered} 603 \\ (3150 \mathrm{~A}) \end{gathered}$				
UM-S32277Z															

[^1]
Annexe 2

S5000 + MU (200... 630 A)
$1-\quad M$
$M \quad N$

S5000 + MU (800... 1800 A)

S5000 + MU (2000... 3150 A)

ELECTRIC DIAGRAM

INPUTS - OUTPUTS SUPPLY BY A INTERNAL SIGNAL +5 Vdc (TERMINAL 4)

Note: Indicative electric drawing.

INPUTS - OUTPUTS SUPPLY BY A INTERNAL SIGNAL + 24 Vdc (TERMINAL 3)

Note: Indicative electric drawing.

Annexe 3

INPUTS - OUTPUTS SUPPLY BY AN EXTERNAL SIGNAL

	Voltage su			
AC	Phase 1	DC	+	1
	Neutral 2		-	2

Inputs
GOTO (0), GOTO (I). Two kinds of connections:
a) Using the auxiliary internal voltage.

The operation order is carried out by closing the circuit with a non voltage contact between the common (+24 Vdc , terminal 3 or +5 Vdc , terminal 4) and the terminals 6 (Go to 1) and 7 (Go to 0).
b) Using a external voltage.

A external voltage source $(V \max =40 \mathrm{Vdc}, \mathrm{Imax}=500 \mathrm{~mA})$ can be connected between the terminals 7 (Go to 0), 6 (Go to 1) and GND1 (terminal 10).

Outputs
 SIGNAL (0), SIGNAL (I) and SIGNAL ERROR. Two kinds of connection:

a) Using the auxiliary internal voltage.

Joining the terminals common (3 signal of +24 Vdc or 4 signal +5 Vdc) with terminals 11 (Error), 12 (position 0) and 13 (position 1). Besides a connection jumper must be done between the terminals GND1 (10) and GND2 (15).
b) Using a external voltage.

A external supply can be connected between the terminals 11 (Error), 12 (position 0), 13 (position 1) and GND2 (15) Vmax: 315 $\mathrm{Vdc} / \mathrm{ac}, \operatorname{Imax}=120 \mathrm{~mA}$.

Take into account the polarity.

* WIRING PROPOSED FOR EXTERNAL UNINTERRUPTED SUPPLY

K1, K2 $=230 \mathrm{Vac}=$ Coil 230 Vac
$\mathrm{K} 1, \mathrm{~K} 2=120 \mathrm{Vac}=$ Coil 120 Vac
$\mathrm{K} 1, \mathrm{~K} 2=277 \mathrm{Vac}=$ Coil 277 Vac
K1, K2 relays electric and mechanically interlocked

VOLTAGE DROPS IN THE WIRING

		$\mathrm{S}(\mathrm{Cu})\left(\mathrm{mm}^{2}\right)$				
Vac / dc		1,5	2,5	4	MU)	Vac / dc
120	UM-C11120Z	264	440	700	UM-C15120Z	120
230	UM-C11230Z	670	1100	1800	UM-C15230Z	230
277	UM-C11277Z	940	1560	2000	UM-C15277Z	277
120	UM-C21120Z	75	125	200	UM-C25120Z	120
230	UM-C21230Z	250	420	675	UM-C25230Z	230
277	UM-C21277Z	380	635	1015	UM-C25277Z	277
120	UM-C31120Z	49	80	130	UM-C35120Z	120
230	UM-C31230Z	160	270	435	UM-C35230Z	230
277	UM-C31277Z	244	400	650	UM-C35277Z	277

Smax without terminal $4 \mathrm{~mm}^{2} /$ Smax with terminal $2,5 \mathrm{~mm}^{2}$.

$S_{(3.5)}=1,5 \mathrm{~mm}^{2}$ Cu max. $\Rightarrow>\operatorname{Lmax}=210 \mathrm{~m} \Rightarrow \Delta \mathrm{~V}=5 \% 24 \mathrm{~V}=1,2 \mathrm{~V}$.
$\mathrm{S}(8.9)=1,5 \mathrm{~mm}^{2}$ max. $\Rightarrow \operatorname{Lmax}^{2} 1.000 \mathrm{~m} \Rightarrow$ Shielded stranded pair Line impedance $=100 \Omega$

[^2]
Annexe 5

ELECTRICAL FEATURES

Voltage supply	Vac/dc	$\begin{gathered} 120 \\ +/-15 \% \end{gathered}$	$\begin{gathered} 230 \\ +/-15 \% \end{gathered}$	$\begin{gathered} 277 \\ +/-15 \% \end{gathered}$
Frequency	Hz	50/60	50/60	50/60
Ambient temperature Un	${ }^{\circ} \mathrm{C}$		$\left.-40^{\circ} /+65^{\circ}{ }^{2}\right)$	
Maximum load while transferring				
For switches ratings from 200 to 400A	A	1.025	0.695	0.595
For switches ratings from 630 to 800A	A	3.415	1.965	1.595
For switches ratings from 1000 to 1800A	A	5.325	3.075	2.475
Minimum idle load	A	0.225	0.225	0.225
Transfer time (maximum values)				
For switches ratings from 200 to 400A	s	0.208	0.192	0.200
For switches ratings from 630 to 800A	s	0.180	0.168	0.174
For switches ratings from 1000 to 1250A	s	0.166	0.148	0.154
For switches ratings from 1600 to 1800A	s	0,172	0,175	0,169
Maximum number of operations (${ }^{1}$)				
For switches from 200 to 400A		7000/10000	7000/10000	7000/10000
For switches from 500 to 630A		4000/10000	4000/10000	4000/10000
For switches of 800A		2500/10000	2500/10000	2500/10000
For switches from 1000 to 1800A		2500/7000	2500/7000	2500/7000
Maximum number of operations hour (${ }^{1}$)				
For switches from 200 to 400A		120/120	120/120	120/120
For switches from 500 to 630A		60/120	60/120	60/120
For switches from 800A		20/120	20/120	20/120
For switches from 1000 to 1800A		20/60	20/60	20/60

[^3]
EMC TABLE

Immunity	Standard	Criterion	Level	Characteristics
Electrostatic discharges	EN 61000-4-2	A	Special	$\pm 8 \mathrm{kV}$ air discharge $\pm 4 \mathrm{kV}$ equipment discharge
Electromagnetic H.F. field	EN 61000-4-3	A	3	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (Burst)	EN 61000-4-4	A	4	$\pm 4 \mathrm{kV}$ power supply $\pm 2 \mathrm{kV}$ signal supply
Fast transient (surge discharge)	EN 61000-4-5	A	Special	$\pm 4 \mathrm{kV}$ power supply L1-L2 Generator impedance 2Ω (wave $1.2 / 50 \mu \mathrm{~s}$)
Conducted disturbances	EN 61000-4-6	A	3	10 V supply and signal
Electromagnetic field, industrial frequency	EN 61000-4-8	A	4	Field intensity $30 \mathrm{~A} / \mathrm{m}$
Voltage dips, interruptions and voltage variations	EN 61000-4-11	$\begin{aligned} & A \\ & B \end{aligned}$		60% Un - 1000 ms 95\% Un-5000 ms
Emission	Standard	Criterion	Level	Characteristics
Emission of harmonic current	EN 61000-3-2		$\begin{aligned} & 3 \\ & 3 \end{aligned}$	0,02 A total current (manual mode) 0,04 A total current (aut. mode)
Unwanted voltage	EN 55011	-	3	Qualified
Radiated emission	EN 55011		3	Qualified

EN 61000 is equivalent to IEC 61000 - EN 55011 is equivalent to CISPR11
CRITERION A: Normal service behaviour in determined limits
CRITERION B: Transient alteration of the service. The appliance gets back to the normal performing without the intervention of the operator
Test level 3: Typical industrial environment, without special installation measures
Test level 4: Severe industrial environment
Special level: level of higher electromagnetic severe environment

Telergon, S.A.U. reserves the right to modify the products herein illustrated without prior notice. Technical data and description in the document are accurate at the printing date, but no liabilities for errors or omissions are accepted. No danger or hazard to health and safety will be caused when products are installed, maintained and used in applications for which they are designed, in accordance with "professional practices" and manufacturer's instructions.

CERT

Iso 9001

[^0]: - According to European Standard 2006/95/CE for low voltage.
 - According to European standard 2004/108/CE of EMC.

[^1]: For inverted mountings there are references for

[^2]: * These values are orientate and can change depending the kind of installation. Each installation should be verified and adjusted so that the voltage supply that arrives to the (MU) input it is the right.

[^3]: ${ }^{(1)}$ According to IEC-EN 60947-3 / Based in our own tests
 $\left.{ }^{(2}\right) 90 \%$ Relative humidity

