

Product Description

The RF1 series provides a compact solid state switching solution suited for confined spaces. Long life time is ensured by the use of assembly technology that reduces stresses on the power semiconductors.

The RF1 series is suitable for resistive loads. The zero switching type (RF1A), switches ON when the voltage crosses zero. The instant-ON type
(RF1B), switches on when the control voltage is applied. Switch OFF occurs when current crosses zero.

Integrated transils provide protection against overvoltages. A green LED indicates presence of the control voltage. FASTON terminals enable fast installation. The RF1 is provided with pre-attached thermal interface ready for mounting on chassis or heatsink.

- AC switching Solid State Relay
- Switching through back to back thyristors
- Long lifetime through reduced stress on output chip
- Operational ratings: up to 280 VAC, 25 AAC
- Control voltage: 5 VDC, 12 VDC, 24 VDC
- LED for control status indication
- Integrated overvoltage protection on output
- Opto isolation input to output 3750 VAC
- 100k cycles endurance test according to UL508
- Pre-attached thermal interface to SSR backplate

* Approvals pending

SSR series
Number of switching poles
Switching mode
Rated operational voltage
Control voltage
Rated operational current
Options

$+$
 *

Specifications are stated at $25^{\circ} \mathrm{C}$ unless otherwise noted

Ordering Key

Switching mode	Rated voltage	Control voltage	Rated current*
RF1A: Zero Cross (ZC) RF1B: Instant On (IO)	23: 230 VAC	L: 5 VDC	25: 25 AAC
	(24-280 VAC),	M: 12 VDC	
	$50 / 60 \mathrm{~Hz}$	D: 24 VDC	

Selection Guide

Rated output voltage, Switching mode	Blocking voltage	Control voltage range	Rated operational current*
$230 \mathrm{VAC}, \mathrm{ZC}$			

General Specifications

Latching voltage (across L-T)	$\leq 20 \mathrm{~V}$	Rated impulse withstand voltage, $\mathrm{U}_{\mathrm{imp}}$	$4 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ for Overvoltage Category III
Operational frequency range	45 to 65 Hz		
Leakage current @ rated voltage	<3m AAC	Isolation Input to Output	3750 Vrms
Power factor	> 0.9 @ rated voltage	Input \& Output to Case	
Control input status	continously ON Green LED, when control input is applied		

Output Specifications

Rated operational current*		On state voltage drop	<1.3 V
AC-51 (IEC/EN 60947-4-3, UL508)	25 AAC	${ }^{12} \mathrm{t}$ for fusing ($\mathrm{t}=10 \mathrm{~ms}$) minimum	$525 \mathrm{~A}^{2} \mathrm{~s}$
Minimum operational current	150 mA		
Rep. overload current -	40 AAC	Critical dV/dt @ Tj init = $40^{\circ} \mathrm{C}$	1000 V/us
Non-repetitive surge current ($\mathrm{t}=10 \mathrm{~ms}$)	325 Ap	UL508	100,000 cycles

*Max. 25 AAC with suitable heatsink. Refer to Heatsink Selection tables.

Output Voltage Specifications

Operational Voltage Range	$24-280$ VAC
Blocking voltage	600 Vp
Output protection	Integrated transil

Input specifications

Agency Approvals and Conformances

| Conformance | IEC/EN 62314
 IEC/EN 60947-4-3 | Agency Approvals |
| :--- | :--- | :--- | | UR: UL508 Recognised, NRNT2 E80573 |
| :--- |
| cUR: CSA 22.2 No.14-10, NRNT8 E80573 |

Electromagnetic Compatibility

EMC Immunity	IEC/EN 60947-4-3
Electrostatic Discharge (ESD) Immunity Air discharge, 8 kV Contact, 4 kV	IEC/EN 61000-4-2 Performance Criteria 2 Performance Criteria 2
Electrical Fast Transient (Burst) Immunity Output: $2 \mathrm{kV}, 5 \mathrm{kHz}$ Input: $1 \mathrm{kV}, 5 \mathrm{kHz}$	IEC/EN 61000-4-4 Performance Criteria 2 Performance Criteria 2
Electrical Surge Immunity Output, line to line, 1 kV Output, line to earth, 2 kV Input, line to line, 500 V Input, line to earth, 500 V	IEC/EN 61000-4-5 Performance Criteria 1 Performance Criteria 1 Performance Criteria 1 Performance Criteria 1
EMC Emission	IEC/EN 60947-4-3
Radio Interference Voltage Emission (Conducted) $0.15-30 \mathrm{MHz}$	IEC/EN 55011 Class A (for currents >15 AAC a filter $100 \mathrm{nF} / 275 \mathrm{VAC}$ / X1 is needed for compliance)

Note:

- Performance Criteria 1: No degradation of performance or loss of function is allowed when the product is operated as intended.
- Performance Criteria 2: During the test, degradation of performance or partial loss of function is allowed. However when the test is complete the product should return operating as intended by itself.
- Performance Criteria 3: Temporary loss of function is allowed, provided the function can be restored by manual operation of the controls.
- Control input lines must be installed together to maintain products' susceptability to Radio Frequency interference.
- Use of AC solid state relays may, according to the application and the load current, cause conducted radio interferences. Use of mains filters may be necessary for cases where the user must meet E.M.C requirements. The capacitor values given inside the filtering specification tables should be taken only as indications, the filter attenuation will depend on the final application.

Filter Connection Diagram

Environmental and Housing Specifications

RoHS (2011/65/EU)	Compliant	Relative humidity	95\% non-condensing @ $40^{\circ} \mathrm{C}$
Pollution degree	2 (non-conductive pollution with possibilities of condensation)	UL flammability rating (housing)	UL 94 V0
$\begin{aligned} & \hline \text { Impact resistance } \\ & \text { (EN50155, EN61373) } \\ & \hline \end{aligned}$	$15 / 11 \mathrm{~g} / \mathrm{ms}$	Installation altitude	0-1000 m. Above 1000 m derate linearly by 1% of FLC
$\begin{aligned} & \hline \text { Vibration resistance } \\ & (2-100 \mathrm{~Hz}, \text { IEC60068-2-26, } \\ & \text { EN50155, EN61373) } \\ & \hline \end{aligned}$			per 100 m up to a maximum of 2000 m
	2 g	GWIT \& GWFI	conforms to EN 60335-1 requirements
Weight	approx. 15 g approx. 210 g (box of 10 pcs .)		
Material	PA66, RAL7035		

Terminal Layout and Dimensions

Connection Specifications

SSR mounting screws	M4
Mounting torque	$1.0 \mathrm{Nm}(8.85 \mathrm{lb}-\mathrm{in})$
Fastons pull out force*	130 N
Connection type power: 1/L1, 2/T1	Faston $6.35 \times 0.8 \mathrm{~mm}$
Connection type control: 3/A1+, 4/A2-	Faston $4.8 \times 0.8 \mathrm{~mm}$

*Refer to Installation instructions

Functional Diagram

Heatsink Selection

Load current [A]		Thermal resistance $\left[{ }^{\circ} \mathrm{C} / \mathrm{W}\right]$					Power dissipation [W]	
25	2.5	1.9	1.3	0.8	0.3	--	--	23.8
22.5	3.2	2.5	1.8	1.1	0.5	--	--	20.9
20	4.1	3.2	2.4	1.6	0.9	0.2	--	18.1
17.5	5.5	4.3	3.2	2.3	1.4	0.6	--	15.4
15	7.5	5.9	4.4	3.2	2.1	1.0	0.1	12.9
12.5	10	8.4	6.4	4.6	3.1	1.7	0.5	10.4
10	16	12	9.3	6.8	4.7	2.8	1.2	8.1
7.5	--	--	15	10	7.1	4.3	2.0	5.9
5	--	--	--	--	13	7.5	3.4	3.8
2.5	--	--	--	--	--	--	8.5	1.9
	20	30	40	50	60	70	80	T_{A}

Note: These thermal resistance values are only applicable to the RF1 using the pre-attached thermal interface.

Output Power Dissipation (Pd)

Connection Diagram

*Depends on system requirements

Thermal Specifications

Operating temperature	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-22\right.$ to $\left.176{ }^{\circ} \mathrm{F}\right)$
Storage temperature	$-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}\left(-40\right.$ to $\left.212^{\circ} \mathrm{F}\right)$
Max. junction temperature, Tj	$100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$
Junction to heatsink thermal resistance, including pre-attached thermal interface, Rthjc	
Max. case temperature, Tc	$\mathrm{Tj}-(\mathrm{PD} \times$ Rthic $)$ See chart below

Duty cycle is considered to be 100%

Short Circuit Protection, Co-ordination Type 2

Part No.	Prospective short circuit current [kArms]	Mersen*	Siba
RF1..25	10	690 VAC, 25A gR 10×38 mm, FR10GR69V25	600 VAC, 25A gRL 10×38 mm,
			6003434.25

[^0]
Installation

Packaging

Accessories

[^0]: * formerly Ferraz Shawmut

